キカガク(KIKAGAKU)で「畳み込みニューラルネットワークの実装」を学ぶ

Photo by Owen Beard on Unsplash

今回は「畳み込みニューラルネットワークの実装 - KIKAGAKU」を学ぶ。

学習内容

データセットの準備

  1.  Tensorflow で使用できる形式に変換 

CNN モデルの定義

  1. 目的関数と最適化手法の選択
  2. モデルの学習
  3. 予測精度の評価

CNN モデルの順伝播の流れ

  1. Convolution 層の計算
  2. Pooling 層の計算
  3. ベクトル化

ソースコード

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
# GPU が使用可能であることを確認
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
from tensorflow.keras.datasets import mnist
# データセットの取得
train, test = mnist.load_data()
print(len(train))
# 1 つ目の要素の確認
print(type(train[0]))
print(train[0])
# 1 目の要素の形を確認
print(train[0].shape)
img = train[0][0] # 画像データセットの 1 サンプル目を抽出
plt.imshow(img, cmap='gray')
plt.show()
# 2 つ目の要素の確認
print(type(train[1]))
print(train[1])
print(train[1].shape)
# height, width, channel への変換と正規化
x_train = train[0].reshape(60000, 28, 28, 1) / 255
x_test = test[0].reshape(10000, 28, 28, 1) / 255
# チャネルが追加されていることを確認
print(x_train[0].shape)
# 正規化されていることを確認
print(x_train[0].min(), x_train[0].max())
# 目標値を学習用とテスト用に分割
t_train = train[1]
t_test = test[1]
# データ型変換
x_train, x_test = x_train.astype('float32'), x_test.astype('float32')
t_train, t_test = t_train.astype('int32'), t_test.astype('int32')
# CNN モデルの定義
import os, random
def reset_seed(seed=0):
os.environ['PYTHONHASHSEED'] = '0'
random.seed(seed)
np.random.seed(seed)
tf.random.set_seed(seed)
# CNN モデルの構築
from tensorflow.keras import models,layers
# シードの固定
reset_seed(0)
# モデルの構築
model = models.Sequential([
# 特徴量抽出
layers.Conv2D(filters=3, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)),
layers.MaxPool2D(pool_size=(2, 2)),
# ベクトル化
layers.Flatten(),
# 識別
layers.Dense(100, activation='relu'),
layers.Dense(10, activation='softmax')
])
# パラメータの確認
print(model.summary())
# 構造のプロット
from tensorflow.keras.utils import plot_model
print(plot_model(model))
# 目的関数と最適化手法の選択
# optimizer の設定
optimizer = tf.keras.optimizers.Adam(lr=0.01)
# モデルのコンパイル
model.compile(optimizer=optimizer,
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# モデルの学習
batch_size = 4096
epochs = 30
# 学習の実行
history = model.fit(x_train, t_train,
batch_size=batch_size,
epochs=epochs, verbose=1,
validation_data=(x_test, t_test))
# 予測精度の評価
# 学習結果の表示
results = pd.DataFrame(history.history)
print(results.tail(3))
# 損失を可視化
results[['loss', 'val_loss']].plot(title='loss')
plt.xlabel('epochs')
plt.show()
# 正解率を可視化
results[['accuracy', 'val_accuracy']].plot(title='accuracy')
plt.xlabel('epochs')
plt.show()
# CNN モデルの順伝播の流れ
# 推論に使用するデータを切り出し + バッチサイズの追加
x_sample = np.array([x_train[0]])
print(x_sample.shape)
# 学習済みモデルの層
print(model.layers)
# 切り出した重みの取得
print(model.layers[0].get_weights())
# Convolution 層の計算
output = model.layers[0](x_sample) # convolution 層の計算
output = output[0].numpy() # NumPy の ndarray オブジェクトに変換
print(output.shape)
# 1 つ目の出力
plt.imshow(output[:, :, 0], cmap='gray')
plt.show()
# 2 つ目の出力
plt.imshow(output[:, :, 1], cmap='gray')
plt.show()
# 3 つ目の出力
plt.imshow(output[:, :, 2], cmap='gray')
plt.show()
# Pooling 層の計算
output = model.layers[0](x_sample) # convolution 層の計算
output = model.layers[1](output) # pooling 層の計算(サイズを 1/2 に変換)
output = output[0].numpy()
print(output.shape)
# 1 つ目の出力
plt.imshow(output[:, :, 0], cmap='gray')
plt.show()
# 2 つ目の出力
plt.imshow(output[:, :, 1], cmap='gray')
plt.show()
# 3 つ目の出力
plt.imshow(output[:, :, 2], cmap='gray')
plt.show()
# ベクトル化
output = model.layers[0](x_sample) # convolution 層の計算
output = model.layers[1](output) # pooling 層の計算(サイズを 1/2 に変換)
output = model.layers[2](output) # ベクトル化
output = output[0].numpy()
print(output.shape)

出力結果

データセット読み込み後、1つ目の画像を抽出。



予測精度の評価。学習結果を確認するために損失を可視化。


正解率を可視化。


Convolution 層のフィルタを通して出力されるデータ毎に可視化。1つ目。


2つ目。


3つ目。


Pooling 層を通して出力されるデータ毎に可視化。1つ目。


2つ目。


3つ目。


実行ログ


[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 13236399410543303316
]
2
<class 'numpy.ndarray'>
[[[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
...
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]]
[[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
...
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]]
[[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
...
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]]
...
[[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
...
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]]
[[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
...
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]]
[[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
...
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]]]
(60000, 28, 28)
<class 'numpy.ndarray'>
[5 0 4 ... 5 6 8]
(60000,)
(28, 28, 1)
0.0 1.0
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 26, 26, 3) 30
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 13, 13, 3) 0
_________________________________________________________________
flatten (Flatten) (None, 507) 0
_________________________________________________________________
dense (Dense) (None, 100) 50800
_________________________________________________________________
dense_1 (Dense) (None, 10) 1010
=================================================================
Total params: 51,840
Trainable params: 51,840
Non-trainable params: 0
_________________________________________________________________
None
None
Train on 60000 samples, validate on 10000 samples
Epoch 1/30
4096/60000 [=>............................] - ETA: 22s - loss: 2.4218 - accuracy: 0.0925
8192/60000 [===>..........................] - ETA: 12s - loss: 2.1954 - accuracy: 0.2791
12288/60000 [=====>........................] - ETA: 9s - loss: 1.9989 - accuracy: 0.3930
16384/60000 [=======>......................] - ETA: 7s - loss: 1.8076 - accuracy: 0.4697
20480/60000 [=========>....................] - ETA: 6s - loss: 1.6403 - accuracy: 0.5237
24576/60000 [===========>..................] - ETA: 5s - loss: 1.4936 - accuracy: 0.5659
28672/60000 [=============>................] - ETA: 4s - loss: 1.3750 - accuracy: 0.5969
32768/60000 [===============>..............] - ETA: 3s - loss: 1.2725 - accuracy: 0.6250
36864/60000 [=================>............] - ETA: 2s - loss: 1.1860 - accuracy: 0.6492
40960/60000 [===================>..........] - ETA: 2s - loss: 1.1180 - accuracy: 0.6685
45056/60000 [=====================>........] - ETA: 1s - loss: 1.0581 - accuracy: 0.6862
49152/60000 [=======================>......] - ETA: 1s - loss: 1.0071 - accuracy: 0.7018
53248/60000 [=========================>....] - ETA: 0s - loss: 0.9646 - accuracy: 0.7141
57344/60000 [===========================>..] - ETA: 0s - loss: 0.9236 - accuracy: 0.7260
60000/60000 [==============================] - 7s 117us/sample - loss: 0.9005 - accuracy: 0.7333 - val_loss: 0.3815 - val_accuracy: 0.8948
Epoch 2/30
4096/60000 [=>............................] - ETA: 4s - loss: 0.3643 - accuracy: 0.8975
8192/60000 [===>..........................] - ETA: 4s - loss: 0.3985 - accuracy: 0.8896
12288/60000 [=====>........................] - ETA: 4s - loss: 0.3881 - accuracy: 0.8893
16384/60000 [=======>......................] - ETA: 3s - loss: 0.3851 - accuracy: 0.8896
20480/60000 [=========>....................] - ETA: 3s - loss: 0.3761 - accuracy: 0.8926
24576/60000 [===========>..................] - ETA: 3s - loss: 0.3705 - accuracy: 0.8948
28672/60000 [=============>................] - ETA: 2s - loss: 0.3625 - accuracy: 0.8964
32768/60000 [===============>..............] - ETA: 2s - loss: 0.3587 - accuracy: 0.8974
36864/60000 [=================>............] - ETA: 1s - loss: 0.3554 - accuracy: 0.8981
40960/60000 [===================>..........] - ETA: 1s - loss: 0.3493 - accuracy: 0.9003
45056/60000 [=====================>........] - ETA: 1s - loss: 0.3462 - accuracy: 0.9011
49152/60000 [=======================>......] - ETA: 0s - loss: 0.3416 - accuracy: 0.9021
53248/60000 [=========================>....] - ETA: 0s - loss: 0.3364 - accuracy: 0.9035
57344/60000 [===========================>..] - ETA: 0s - loss: 0.3316 - accuracy: 0.9046
60000/60000 [==============================] - 5s 92us/sample - loss: 0.3285 - accuracy: 0.9055 - val_loss: 0.2628 - val_accuracy: 0.9209
Epoch 3/30
4096/60000 [=>............................] - ETA: 4s - loss: 0.2686 - accuracy: 0.9197
8192/60000 [===>..........................] - ETA: 4s - loss: 0.2810 - accuracy: 0.9185
12288/60000 [=====>........................] - ETA: 4s - loss: 0.2694 - accuracy: 0.9211
16384/60000 [=======>......................] - ETA: 3s - loss: 0.2659 - accuracy: 0.9231
20480/60000 [=========>....................] - ETA: 3s - loss: 0.2645 - accuracy: 0.9232
24576/60000 [===========>..................] - ETA: 3s - loss: 0.2602 - accuracy: 0.9246
28672/60000 [=============>................] - ETA: 2s - loss: 0.2569 - accuracy: 0.9252
32768/60000 [===============>..............] - ETA: 2s - loss: 0.2546 - accuracy: 0.9265
36864/60000 [=================>............] - ETA: 2s - loss: 0.2514 - accuracy: 0.9271
40960/60000 [===================>..........] - ETA: 1s - loss: 0.2491 - accuracy: 0.9274
45056/60000 [=====================>........] - ETA: 1s - loss: 0.2449 - accuracy: 0.9288
49152/60000 [=======================>......] - ETA: 0s - loss: 0.2420 - accuracy: 0.9296
53248/60000 [=========================>....] - ETA: 0s - loss: 0.2407 - accuracy: 0.9297
57344/60000 [===========================>..] - ETA: 0s - loss: 0.2383 - accuracy: 0.9304
60000/60000 [==============================] - 6s 93us/sample - loss: 0.2376 - accuracy: 0.9307 - val_loss: 0.2018 - val_accuracy: 0.9366
Epoch 4/30
4096/60000 [=>............................] - ETA: 4s - loss: 0.2013 - accuracy: 0.9448
8192/60000 [===>..........................] - ETA: 4s - loss: 0.2076 - accuracy: 0.9415
12288/60000 [=====>........................] - ETA: 4s - loss: 0.2024 - accuracy: 0.9408
16384/60000 [=======>......................] - ETA: 3s - loss: 0.2013 - accuracy: 0.9413
20480/60000 [=========>....................] - ETA: 3s - loss: 0.2025 - accuracy: 0.9405
24576/60000 [===========>..................] - ETA: 3s - loss: 0.2023 - accuracy: 0.9406
28672/60000 [=============>................] - ETA: 2s - loss: 0.1978 - accuracy: 0.9422
32768/60000 [===============>..............] - ETA: 2s - loss: 0.1951 - accuracy: 0.9426
36864/60000 [=================>............] - ETA: 1s - loss: 0.1928 - accuracy: 0.9431
40960/60000 [===================>..........] - ETA: 1s - loss: 0.1892 - accuracy: 0.9441
45056/60000 [=====================>........] - ETA: 1s - loss: 0.1894 - accuracy: 0.9439
49152/60000 [=======================>......] - ETA: 0s - loss: 0.1878 - accuracy: 0.9442
53248/60000 [=========================>....] - ETA: 0s - loss: 0.1885 - accuracy: 0.9444
57344/60000 [===========================>..] - ETA: 0s - loss: 0.1891 - accuracy: 0.9442
60000/60000 [==============================] - 5s 91us/sample - loss: 0.1883 - accuracy: 0.9445 - val_loss: 0.1668 - val_accuracy: 0.9465
Epoch 5/30
4096/60000 [=>............................] - ETA: 4s - loss: 0.1623 - accuracy: 0.9546
8192/60000 [===>..........................] - ETA: 4s - loss: 0.1689 - accuracy: 0.9509
12288/60000 [=====>........................] - ETA: 4s - loss: 0.1715 - accuracy: 0.9492
16384/60000 [=======>......................] - ETA: 3s - loss: 0.1663 - accuracy: 0.9503
20480/60000 [=========>....................] - ETA: 3s - loss: 0.1664 - accuracy: 0.9501
24576/60000 [===========>..................] - ETA: 2s - loss: 0.1653 - accuracy: 0.9506
28672/60000 [=============>................] - ETA: 2s - loss: 0.1648 - accuracy: 0.9506
32768/60000 [===============>..............] - ETA: 2s - loss: 0.1635 - accuracy: 0.9510
36864/60000 [=================>............] - ETA: 1s - loss: 0.1614 - accuracy: 0.9516
40960/60000 [===================>..........] - ETA: 1s - loss: 0.1611 - accuracy: 0.9514
45056/60000 [=====================>........] - ETA: 1s - loss: 0.1603 - accuracy: 0.9517
49152/60000 [=======================>......] - ETA: 0s - loss: 0.1594 - accuracy: 0.9522
53248/60000 [=========================>....] - ETA: 0s - loss: 0.1590 - accuracy: 0.9520
57344/60000 [===========================>..] - ETA: 0s - loss: 0.1567 - accuracy: 0.9529
60000/60000 [==============================] - 5s 91us/sample - loss: 0.1562 - accuracy: 0.9531 - val_loss: 0.1433 - val_accuracy: 0.9547
Epoch 6/30
4096/60000 [=>............................] - ETA: 4s - loss: 0.1276 - accuracy: 0.9639
8192/60000 [===>..........................] - ETA: 4s - loss: 0.1416 - accuracy: 0.9597
12288/60000 [=====>........................] - ETA: 3s - loss: 0.1406 - accuracy: 0.9598
16384/60000 [=======>......................] - ETA: 3s - loss: 0.1412 - accuracy: 0.9595
20480/60000 [=========>....................] - ETA: 3s - loss: 0.1405 - accuracy: 0.9591
24576/60000 [===========>..................] - ETA: 2s - loss: 0.1395 - accuracy: 0.9599
28672/60000 [=============>................] - ETA: 2s - loss: 0.1382 - accuracy: 0.9600
32768/60000 [===============>..............] - ETA: 2s - loss: 0.1365 - accuracy: 0.9599
36864/60000 [=================>............] - ETA: 1s - loss: 0.1370 - accuracy: 0.9595
40960/60000 [===================>..........] - ETA: 1s - loss: 0.1366 - accuracy: 0.9599
45056/60000 [=====================>........] - ETA: 1s - loss: 0.1353 - accuracy: 0.9601
49152/60000 [=======================>......] - ETA: 0s - loss: 0.1338 - accuracy: 0.9605
53248/60000 [=========================>....] - ETA: 0s - loss: 0.1340 - accuracy: 0.9604
57344/60000 [===========================>..] - ETA: 0s - loss: 0.1333 - accuracy: 0.9607
60000/60000 [==============================] - 5s 92us/sample - loss: 0.1334 - accuracy: 0.9605 - val_loss: 0.1293 - val_accuracy: 0.9592
Epoch 7/30
4096/60000 [=>............................] - ETA: 4s - loss: 0.1419 - accuracy: 0.9602
8192/60000 [===>..........................] - ETA: 4s - loss: 0.1305 - accuracy: 0.9618
12288/60000 [=====>........................] - ETA: 4s - loss: 0.1245 - accuracy: 0.9644
16384/60000 [=======>......................] - ETA: 3s - loss: 0.1216 - accuracy: 0.9650
20480/60000 [=========>....................] - ETA: 3s - loss: 0.1172 - accuracy: 0.9663
24576/60000 [===========>..................] - ETA: 3s - loss: 0.1161 - accuracy: 0.9661
28672/60000 [=============>................] - ETA: 2s - loss: 0.1164 - accuracy: 0.9655
32768/60000 [===============>..............] - ETA: 2s - loss: 0.1170 - accuracy: 0.9654
36864/60000 [=================>............] - ETA: 1s - loss: 0.1168 - accuracy: 0.9654
40960/60000 [===================>..........] - ETA: 1s - loss: 0.1173 - accuracy: 0.9654
45056/60000 [=====================>........] - ETA: 1s - loss: 0.1169 - accuracy: 0.9653
49152/60000 [=======================>......] - ETA: 0s - loss: 0.1164 - accuracy: 0.9653
53248/60000 [=========================>....] - ETA: 0s - loss: 0.1165 - accuracy: 0.9650
57344/60000 [===========================>..] - ETA: 0s - loss: 0.1157 - accuracy: 0.9654
60000/60000 [==============================] - 6s 93us/sample - loss: 0.1155 - accuracy: 0.9654 - val_loss: 0.1108 - val_accuracy: 0.9654
Epoch 8/30
4096/60000 [=>............................] - ETA: 4s - loss: 0.1004 - accuracy: 0.9678
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0994 - accuracy: 0.9688
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0976 - accuracy: 0.9700
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0981 - accuracy: 0.9702
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0970 - accuracy: 0.9703
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0971 - accuracy: 0.9698
28672/60000 [=============>................] - ETA: 2s - loss: 0.0985 - accuracy: 0.9700
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0967 - accuracy: 0.9704
36864/60000 [=================>............] - ETA: 2s - loss: 0.0962 - accuracy: 0.9706
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0967 - accuracy: 0.9707
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0958 - accuracy: 0.9709
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0968 - accuracy: 0.9706
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0971 - accuracy: 0.9707
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0985 - accuracy: 0.9705
60000/60000 [==============================] - 6s 95us/sample - loss: 0.0985 - accuracy: 0.9706 - val_loss: 0.0990 - val_accuracy: 0.9686
Epoch 9/30
4096/60000 [=>............................] - ETA: 4s - loss: 0.0931 - accuracy: 0.9734
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0986 - accuracy: 0.9707
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0982 - accuracy: 0.9713
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0943 - accuracy: 0.9720
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0926 - accuracy: 0.9723
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0915 - accuracy: 0.9727
28672/60000 [=============>................] - ETA: 2s - loss: 0.0936 - accuracy: 0.9719
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0935 - accuracy: 0.9716
36864/60000 [=================>............] - ETA: 2s - loss: 0.0921 - accuracy: 0.9723
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0909 - accuracy: 0.9726
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0909 - accuracy: 0.9726
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0905 - accuracy: 0.9725
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0912 - accuracy: 0.9723
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0906 - accuracy: 0.9724
60000/60000 [==============================] - 6s 95us/sample - loss: 0.0900 - accuracy: 0.9727 - val_loss: 0.1048 - val_accuracy: 0.9661
Epoch 10/30
4096/60000 [=>............................] - ETA: 5s - loss: 0.0806 - accuracy: 0.9744
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0882 - accuracy: 0.9730
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0862 - accuracy: 0.9733
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0855 - accuracy: 0.9738
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0842 - accuracy: 0.9746
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0828 - accuracy: 0.9749
28672/60000 [=============>................] - ETA: 2s - loss: 0.0813 - accuracy: 0.9754
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0817 - accuracy: 0.9753
36864/60000 [=================>............] - ETA: 2s - loss: 0.0818 - accuracy: 0.9752
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0819 - accuracy: 0.9753
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0814 - accuracy: 0.9751
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0811 - accuracy: 0.9752
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0812 - accuracy: 0.9751
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0820 - accuracy: 0.9748
60000/60000 [==============================] - 6s 96us/sample - loss: 0.0817 - accuracy: 0.9748 - val_loss: 0.0892 - val_accuracy: 0.9714
Epoch 11/30
4096/60000 [=>............................] - ETA: 5s - loss: 0.0764 - accuracy: 0.9749
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0846 - accuracy: 0.9722
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0788 - accuracy: 0.9757
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0775 - accuracy: 0.9761
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0791 - accuracy: 0.9756
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0776 - accuracy: 0.9759
28672/60000 [=============>................] - ETA: 2s - loss: 0.0786 - accuracy: 0.9755
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0782 - accuracy: 0.9760
36864/60000 [=================>............] - ETA: 2s - loss: 0.0777 - accuracy: 0.9762
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0768 - accuracy: 0.9764
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0770 - accuracy: 0.9762
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0775 - accuracy: 0.9761
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0774 - accuracy: 0.9761
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0767 - accuracy: 0.9763
60000/60000 [==============================] - 6s 97us/sample - loss: 0.0769 - accuracy: 0.9761 - val_loss: 0.0852 - val_accuracy: 0.9745
Epoch 12/30
4096/60000 [=>............................] - ETA: 5s - loss: 0.0669 - accuracy: 0.9785
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0698 - accuracy: 0.9780
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0695 - accuracy: 0.9787
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0687 - accuracy: 0.9783
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0696 - accuracy: 0.9781
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0691 - accuracy: 0.9781
28672/60000 [=============>................] - ETA: 2s - loss: 0.0684 - accuracy: 0.9783
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0668 - accuracy: 0.9788
36864/60000 [=================>............] - ETA: 2s - loss: 0.0684 - accuracy: 0.9785
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0685 - accuracy: 0.9787
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0687 - accuracy: 0.9785
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0690 - accuracy: 0.9784
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0687 - accuracy: 0.9785
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0689 - accuracy: 0.9786
60000/60000 [==============================] - 6s 96us/sample - loss: 0.0690 - accuracy: 0.9786 - val_loss: 0.0824 - val_accuracy: 0.9749
Epoch 13/30
4096/60000 [=>............................] - ETA: 4s - loss: 0.0714 - accuracy: 0.9768
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0639 - accuracy: 0.9806
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0648 - accuracy: 0.9798
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0639 - accuracy: 0.9806
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0629 - accuracy: 0.9813
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0629 - accuracy: 0.9815
28672/60000 [=============>................] - ETA: 2s - loss: 0.0633 - accuracy: 0.9810
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0637 - accuracy: 0.9809
36864/60000 [=================>............] - ETA: 1s - loss: 0.0636 - accuracy: 0.9809
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0635 - accuracy: 0.9809
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0628 - accuracy: 0.9810
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0621 - accuracy: 0.9814
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0621 - accuracy: 0.9813
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0629 - accuracy: 0.9810
60000/60000 [==============================] - 6s 92us/sample - loss: 0.0629 - accuracy: 0.9810 - val_loss: 0.0771 - val_accuracy: 0.9760
Epoch 14/30
4096/60000 [=>............................] - ETA: 4s - loss: 0.0471 - accuracy: 0.9851
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0542 - accuracy: 0.9838
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0528 - accuracy: 0.9832
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0568 - accuracy: 0.9826
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0556 - accuracy: 0.9832
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0553 - accuracy: 0.9832
28672/60000 [=============>................] - ETA: 2s - loss: 0.0539 - accuracy: 0.9838
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0537 - accuracy: 0.9837
36864/60000 [=================>............] - ETA: 1s - loss: 0.0531 - accuracy: 0.9842
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0529 - accuracy: 0.9842
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0533 - accuracy: 0.9840
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0538 - accuracy: 0.9837
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0536 - accuracy: 0.9837
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0541 - accuracy: 0.9836
60000/60000 [==============================] - 6s 92us/sample - loss: 0.0549 - accuracy: 0.9834 - val_loss: 0.0779 - val_accuracy: 0.9756
Epoch 15/30
4096/60000 [=>............................] - ETA: 5s - loss: 0.0568 - accuracy: 0.9829
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0537 - accuracy: 0.9844
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0530 - accuracy: 0.9848
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0539 - accuracy: 0.9843
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0522 - accuracy: 0.9849
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0521 - accuracy: 0.9848
28672/60000 [=============>................] - ETA: 2s - loss: 0.0517 - accuracy: 0.9851
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0516 - accuracy: 0.9848
36864/60000 [=================>............] - ETA: 2s - loss: 0.0511 - accuracy: 0.9848
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0509 - accuracy: 0.9847
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0515 - accuracy: 0.9847
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0510 - accuracy: 0.9848
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0508 - accuracy: 0.9849
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0511 - accuracy: 0.9845
60000/60000 [==============================] - 6s 96us/sample - loss: 0.0511 - accuracy: 0.9844 - val_loss: 0.0777 - val_accuracy: 0.9773
Epoch 16/30
4096/60000 [=>............................] - ETA: 5s - loss: 0.0478 - accuracy: 0.9844
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0466 - accuracy: 0.9845
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0430 - accuracy: 0.9865
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0438 - accuracy: 0.9863
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0454 - accuracy: 0.9854
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0447 - accuracy: 0.9857
28672/60000 [=============>................] - ETA: 2s - loss: 0.0459 - accuracy: 0.9857
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0460 - accuracy: 0.9854
36864/60000 [=================>............] - ETA: 2s - loss: 0.0463 - accuracy: 0.9857
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0463 - accuracy: 0.9857
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0468 - accuracy: 0.9855
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0477 - accuracy: 0.9852
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0480 - accuracy: 0.9851
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0478 - accuracy: 0.9852
60000/60000 [==============================] - 6s 96us/sample - loss: 0.0476 - accuracy: 0.9853 - val_loss: 0.0734 - val_accuracy: 0.9774
Epoch 17/30
4096/60000 [=>............................] - ETA: 4s - loss: 0.0489 - accuracy: 0.9893
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0461 - accuracy: 0.9884
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0457 - accuracy: 0.9874
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0439 - accuracy: 0.9877
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0451 - accuracy: 0.9866
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0450 - accuracy: 0.9864
28672/60000 [=============>................] - ETA: 2s - loss: 0.0442 - accuracy: 0.9865
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0442 - accuracy: 0.9864
36864/60000 [=================>............] - ETA: 2s - loss: 0.0439 - accuracy: 0.9862
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0437 - accuracy: 0.9862
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0438 - accuracy: 0.9861
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0444 - accuracy: 0.9860
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0449 - accuracy: 0.9858
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0455 - accuracy: 0.9855
60000/60000 [==============================] - 6s 96us/sample - loss: 0.0460 - accuracy: 0.9854 - val_loss: 0.0745 - val_accuracy: 0.9779
Epoch 18/30
4096/60000 [=>............................] - ETA: 4s - loss: 0.0341 - accuracy: 0.9883
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0436 - accuracy: 0.9845
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0420 - accuracy: 0.9857
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0445 - accuracy: 0.9854
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0454 - accuracy: 0.9853
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0457 - accuracy: 0.9851
28672/60000 [=============>................] - ETA: 2s - loss: 0.0450 - accuracy: 0.9855
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0452 - accuracy: 0.9854
36864/60000 [=================>............] - ETA: 2s - loss: 0.0447 - accuracy: 0.9856
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0445 - accuracy: 0.9856
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0441 - accuracy: 0.9857
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0439 - accuracy: 0.9857
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0440 - accuracy: 0.9858
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0437 - accuracy: 0.9860
60000/60000 [==============================] - 6s 94us/sample - loss: 0.0436 - accuracy: 0.9862 - val_loss: 0.0712 - val_accuracy: 0.9779
Epoch 19/30
4096/60000 [=>............................] - ETA: 5s - loss: 0.0329 - accuracy: 0.9895
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0314 - accuracy: 0.9901
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0327 - accuracy: 0.9889
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0345 - accuracy: 0.9885
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0355 - accuracy: 0.9883
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0360 - accuracy: 0.9883
28672/60000 [=============>................] - ETA: 2s - loss: 0.0366 - accuracy: 0.9883
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0374 - accuracy: 0.9882
36864/60000 [=================>............] - ETA: 2s - loss: 0.0375 - accuracy: 0.9883
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0380 - accuracy: 0.9880
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0382 - accuracy: 0.9880
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0387 - accuracy: 0.9879
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0390 - accuracy: 0.9875
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0384 - accuracy: 0.9878
60000/60000 [==============================] - 6s 97us/sample - loss: 0.0384 - accuracy: 0.9877 - val_loss: 0.0830 - val_accuracy: 0.9753
Epoch 20/30
4096/60000 [=>............................] - ETA: 4s - loss: 0.0465 - accuracy: 0.9829
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0405 - accuracy: 0.9855
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0374 - accuracy: 0.9870
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0385 - accuracy: 0.9870
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0374 - accuracy: 0.9875
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0377 - accuracy: 0.9876
28672/60000 [=============>................] - ETA: 2s - loss: 0.0380 - accuracy: 0.9875
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0385 - accuracy: 0.9874
36864/60000 [=================>............] - ETA: 2s - loss: 0.0384 - accuracy: 0.9875
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0377 - accuracy: 0.9877
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0371 - accuracy: 0.9879
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0371 - accuracy: 0.9880
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0368 - accuracy: 0.9882
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0372 - accuracy: 0.9881
60000/60000 [==============================] - 6s 96us/sample - loss: 0.0376 - accuracy: 0.9879 - val_loss: 0.0730 - val_accuracy: 0.9798
Epoch 21/30
4096/60000 [=>............................] - ETA: 4s - loss: 0.0259 - accuracy: 0.9934
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0305 - accuracy: 0.9911
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0302 - accuracy: 0.9915
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0293 - accuracy: 0.9914
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0318 - accuracy: 0.9902
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0335 - accuracy: 0.9896
28672/60000 [=============>................] - ETA: 2s - loss: 0.0340 - accuracy: 0.9893
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0344 - accuracy: 0.9890
36864/60000 [=================>............] - ETA: 2s - loss: 0.0346 - accuracy: 0.9889
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0343 - accuracy: 0.9890
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0345 - accuracy: 0.9890
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0350 - accuracy: 0.9889
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0343 - accuracy: 0.9891
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0347 - accuracy: 0.9890
60000/60000 [==============================] - 6s 95us/sample - loss: 0.0353 - accuracy: 0.9889 - val_loss: 0.0710 - val_accuracy: 0.9784
Epoch 22/30
4096/60000 [=>............................] - ETA: 4s - loss: 0.0273 - accuracy: 0.9922
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0301 - accuracy: 0.9911
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0306 - accuracy: 0.9904
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0294 - accuracy: 0.9907
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0305 - accuracy: 0.9902
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0308 - accuracy: 0.9903
28672/60000 [=============>................] - ETA: 2s - loss: 0.0305 - accuracy: 0.9902
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0305 - accuracy: 0.9901
36864/60000 [=================>............] - ETA: 2s - loss: 0.0307 - accuracy: 0.9901
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0310 - accuracy: 0.9900
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0309 - accuracy: 0.9901
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0307 - accuracy: 0.9901
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0307 - accuracy: 0.9903
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0311 - accuracy: 0.9901
60000/60000 [==============================] - 6s 94us/sample - loss: 0.0309 - accuracy: 0.9902 - val_loss: 0.0695 - val_accuracy: 0.9799
Epoch 23/30
4096/60000 [=>............................] - ETA: 4s - loss: 0.0247 - accuracy: 0.9927
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0268 - accuracy: 0.9918
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0276 - accuracy: 0.9912
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0258 - accuracy: 0.9920
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0269 - accuracy: 0.9919
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0264 - accuracy: 0.9920
28672/60000 [=============>................] - ETA: 2s - loss: 0.0266 - accuracy: 0.9921
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0269 - accuracy: 0.9920
36864/60000 [=================>............] - ETA: 1s - loss: 0.0270 - accuracy: 0.9920
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0278 - accuracy: 0.9916
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0276 - accuracy: 0.9917
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0275 - accuracy: 0.9917
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0274 - accuracy: 0.9918
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0274 - accuracy: 0.9918
60000/60000 [==============================] - 6s 92us/sample - loss: 0.0274 - accuracy: 0.9918 - val_loss: 0.0684 - val_accuracy: 0.9798
Epoch 24/30
4096/60000 [=>............................] - ETA: 4s - loss: 0.0309 - accuracy: 0.9917
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0273 - accuracy: 0.9923
12288/60000 [=====>........................] - ETA: 3s - loss: 0.0279 - accuracy: 0.9923
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0280 - accuracy: 0.9924
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0277 - accuracy: 0.9921
24576/60000 [===========>..................] - ETA: 2s - loss: 0.0266 - accuracy: 0.9925
28672/60000 [=============>................] - ETA: 2s - loss: 0.0261 - accuracy: 0.9926
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0258 - accuracy: 0.9925
36864/60000 [=================>............] - ETA: 1s - loss: 0.0252 - accuracy: 0.9928
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0254 - accuracy: 0.9929
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0250 - accuracy: 0.9930
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0251 - accuracy: 0.9928
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0250 - accuracy: 0.9927
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0250 - accuracy: 0.9926
60000/60000 [==============================] - 5s 92us/sample - loss: 0.0251 - accuracy: 0.9926 - val_loss: 0.0810 - val_accuracy: 0.9771
Epoch 25/30
4096/60000 [=>............................] - ETA: 4s - loss: 0.0230 - accuracy: 0.9927
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0233 - accuracy: 0.9924
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0217 - accuracy: 0.9932
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0242 - accuracy: 0.9921
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0247 - accuracy: 0.9921
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0248 - accuracy: 0.9923
28672/60000 [=============>................] - ETA: 2s - loss: 0.0243 - accuracy: 0.9925
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0239 - accuracy: 0.9927
36864/60000 [=================>............] - ETA: 2s - loss: 0.0242 - accuracy: 0.9926
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0247 - accuracy: 0.9925
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0248 - accuracy: 0.9924
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0247 - accuracy: 0.9924
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0247 - accuracy: 0.9924
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0248 - accuracy: 0.9924
60000/60000 [==============================] - 6s 93us/sample - loss: 0.0251 - accuracy: 0.9923 - val_loss: 0.0722 - val_accuracy: 0.9796
Epoch 26/30
4096/60000 [=>............................] - ETA: 4s - loss: 0.0267 - accuracy: 0.9905
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0230 - accuracy: 0.9928
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0225 - accuracy: 0.9932
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0218 - accuracy: 0.9937
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0227 - accuracy: 0.9931
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0221 - accuracy: 0.9932
28672/60000 [=============>................] - ETA: 2s - loss: 0.0222 - accuracy: 0.9932
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0224 - accuracy: 0.9932
36864/60000 [=================>............] - ETA: 2s - loss: 0.0221 - accuracy: 0.9934
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0219 - accuracy: 0.9934
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0215 - accuracy: 0.9936
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0215 - accuracy: 0.9936
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0218 - accuracy: 0.9935
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0216 - accuracy: 0.9935
60000/60000 [==============================] - 6s 94us/sample - loss: 0.0216 - accuracy: 0.9935 - val_loss: 0.0702 - val_accuracy: 0.9805
Epoch 27/30
4096/60000 [=>............................] - ETA: 4s - loss: 0.0156 - accuracy: 0.9963
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0158 - accuracy: 0.9957
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0181 - accuracy: 0.9950
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0189 - accuracy: 0.9948
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0191 - accuracy: 0.9952
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0198 - accuracy: 0.9946
28672/60000 [=============>................] - ETA: 2s - loss: 0.0194 - accuracy: 0.9947
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0190 - accuracy: 0.9948
36864/60000 [=================>............] - ETA: 1s - loss: 0.0192 - accuracy: 0.9946
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0189 - accuracy: 0.9946
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0194 - accuracy: 0.9945
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0193 - accuracy: 0.9946
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0195 - accuracy: 0.9945
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0192 - accuracy: 0.9947
60000/60000 [==============================] - 5s 91us/sample - loss: 0.0194 - accuracy: 0.9946 - val_loss: 0.0734 - val_accuracy: 0.9796
Epoch 28/30
4096/60000 [=>............................] - ETA: 4s - loss: 0.0164 - accuracy: 0.9963
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0172 - accuracy: 0.9956
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0170 - accuracy: 0.9960
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0183 - accuracy: 0.9957
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0182 - accuracy: 0.9957
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0179 - accuracy: 0.9956
28672/60000 [=============>................] - ETA: 2s - loss: 0.0184 - accuracy: 0.9952
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0181 - accuracy: 0.9953
36864/60000 [=================>............] - ETA: 1s - loss: 0.0183 - accuracy: 0.9953
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0185 - accuracy: 0.9951
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0187 - accuracy: 0.9949
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0188 - accuracy: 0.9948
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0188 - accuracy: 0.9947
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0189 - accuracy: 0.9946
60000/60000 [==============================] - 6s 93us/sample - loss: 0.0187 - accuracy: 0.9947 - val_loss: 0.0779 - val_accuracy: 0.9781
Epoch 29/30
4096/60000 [=>............................] - ETA: 5s - loss: 0.0223 - accuracy: 0.9939
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0199 - accuracy: 0.9948
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0203 - accuracy: 0.9944
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0192 - accuracy: 0.9944
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0178 - accuracy: 0.9950
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0178 - accuracy: 0.9948
28672/60000 [=============>................] - ETA: 2s - loss: 0.0180 - accuracy: 0.9948
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0175 - accuracy: 0.9949
36864/60000 [=================>............] - ETA: 2s - loss: 0.0174 - accuracy: 0.9950
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0169 - accuracy: 0.9952
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0173 - accuracy: 0.9949
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0172 - accuracy: 0.9949
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0170 - accuracy: 0.9950
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0176 - accuracy: 0.9948
60000/60000 [==============================] - 6s 92us/sample - loss: 0.0178 - accuracy: 0.9948 - val_loss: 0.0757 - val_accuracy: 0.9790
Epoch 30/30
4096/60000 [=>............................] - ETA: 4s - loss: 0.0154 - accuracy: 0.9949
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0166 - accuracy: 0.9944
12288/60000 [=====>........................] - ETA: 3s - loss: 0.0163 - accuracy: 0.9948
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0162 - accuracy: 0.9951
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0166 - accuracy: 0.9948
24576/60000 [===========>..................] - ETA: 2s - loss: 0.0165 - accuracy: 0.9948
28672/60000 [=============>................] - ETA: 2s - loss: 0.0161 - accuracy: 0.9950
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0159 - accuracy: 0.9952
36864/60000 [=================>............] - ETA: 1s - loss: 0.0166 - accuracy: 0.9950
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0170 - accuracy: 0.9949
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0170 - accuracy: 0.9949
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0171 - accuracy: 0.9949
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0169 - accuracy: 0.9949
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0175 - accuracy: 0.9948
60000/60000 [==============================] - 5s 92us/sample - loss: 0.0177 - accuracy: 0.9948 - val_loss: 0.0777 - val_accuracy: 0.9792
loss accuracy val_loss val_accuracy
27 0.018740 0.994683 0.077904 0.9781
28 0.017760 0.994750 0.075688 0.9790
29 0.017704 0.994767 0.077669 0.9792
(1, 28, 28, 1)
[<tensorflow.python.keras.layers.convolutional.Conv2D object at 0x000002A710972C08>, <tensorflow.python.keras.layers.pooling.MaxPooling2D object at 0x000002A719A337C8>, <tensorflow.python.keras.layers.core.Flatten object at 0x000002A719A32AC8>, <tensorflow.python.keras.layers.core.Dense object at 0x000002A719A49688>, <tensorflow.python.keras.layers.core.Dense object at 0x000002A719A2F248>]
[array([[[[-0.82907677, -0.7962916 , 0.38359177]],
[[ 0.3429307 , -0.27833146, 0.59408164]],
[[ 0.5247829 , 0.5927083 , 0.2917029 ]]],
[[[-0.8684553 , -0.32124314, 0.37797683]],
[[-0.1796955 , 0.10554386, 0.27022994]],
[[ 0.6602316 , 0.61931485, 0.3056805 ]]],
[[[-0.12969881, -0.27535865, -0.30478483]],
[[-0.8268494 , 0.5394653 , 0.34637433]],
[[ 0.40404692, 0.09111527, 0.43088043]]]], dtype=float32), array([ 0.07662638, 0.02554144, -0.0072965 ], dtype=float32)]
(26, 26, 3)
(13, 13, 3)
(507,)



Posted in  on 6/01/2020 by rteak |