今回は「畳み込みニューラルネットワークの実装 - KIKAGAKU」を学ぶ。
Table of Contents [Disable]
学習内容
データセットの準備
- Tensorflow で使用できる形式に変換
CNN モデルの定義
- 目的関数と最適化手法の選択
- モデルの学習
- 予測精度の評価
CNN モデルの順伝播の流れ
- Convolution 層の計算
- Pooling 層の計算
- ベクトル化
ソースコード
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import tensorflow as tf | |
# GPU が使用可能であることを確認 | |
from tensorflow.python.client import device_lib | |
print(device_lib.list_local_devices()) | |
from tensorflow.keras.datasets import mnist | |
# データセットの取得 | |
train, test = mnist.load_data() | |
print(len(train)) | |
# 1 つ目の要素の確認 | |
print(type(train[0])) | |
print(train[0]) | |
# 1 目の要素の形を確認 | |
print(train[0].shape) | |
img = train[0][0] # 画像データセットの 1 サンプル目を抽出 | |
plt.imshow(img, cmap='gray') | |
plt.show() | |
# 2 つ目の要素の確認 | |
print(type(train[1])) | |
print(train[1]) | |
print(train[1].shape) | |
# height, width, channel への変換と正規化 | |
x_train = train[0].reshape(60000, 28, 28, 1) / 255 | |
x_test = test[0].reshape(10000, 28, 28, 1) / 255 | |
# チャネルが追加されていることを確認 | |
print(x_train[0].shape) | |
# 正規化されていることを確認 | |
print(x_train[0].min(), x_train[0].max()) | |
# 目標値を学習用とテスト用に分割 | |
t_train = train[1] | |
t_test = test[1] | |
# データ型変換 | |
x_train, x_test = x_train.astype('float32'), x_test.astype('float32') | |
t_train, t_test = t_train.astype('int32'), t_test.astype('int32') | |
# CNN モデルの定義 | |
import os, random | |
def reset_seed(seed=0): | |
os.environ['PYTHONHASHSEED'] = '0' | |
random.seed(seed) | |
np.random.seed(seed) | |
tf.random.set_seed(seed) | |
# CNN モデルの構築 | |
from tensorflow.keras import models,layers | |
# シードの固定 | |
reset_seed(0) | |
# モデルの構築 | |
model = models.Sequential([ | |
# 特徴量抽出 | |
layers.Conv2D(filters=3, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)), | |
layers.MaxPool2D(pool_size=(2, 2)), | |
# ベクトル化 | |
layers.Flatten(), | |
# 識別 | |
layers.Dense(100, activation='relu'), | |
layers.Dense(10, activation='softmax') | |
]) | |
# パラメータの確認 | |
print(model.summary()) | |
# 構造のプロット | |
from tensorflow.keras.utils import plot_model | |
print(plot_model(model)) | |
# 目的関数と最適化手法の選択 | |
# optimizer の設定 | |
optimizer = tf.keras.optimizers.Adam(lr=0.01) | |
# モデルのコンパイル | |
model.compile(optimizer=optimizer, | |
loss='sparse_categorical_crossentropy', | |
metrics=['accuracy']) | |
# モデルの学習 | |
batch_size = 4096 | |
epochs = 30 | |
# 学習の実行 | |
history = model.fit(x_train, t_train, | |
batch_size=batch_size, | |
epochs=epochs, verbose=1, | |
validation_data=(x_test, t_test)) | |
# 予測精度の評価 | |
# 学習結果の表示 | |
results = pd.DataFrame(history.history) | |
print(results.tail(3)) | |
# 損失を可視化 | |
results[['loss', 'val_loss']].plot(title='loss') | |
plt.xlabel('epochs') | |
plt.show() | |
# 正解率を可視化 | |
results[['accuracy', 'val_accuracy']].plot(title='accuracy') | |
plt.xlabel('epochs') | |
plt.show() | |
# CNN モデルの順伝播の流れ | |
# 推論に使用するデータを切り出し + バッチサイズの追加 | |
x_sample = np.array([x_train[0]]) | |
print(x_sample.shape) | |
# 学習済みモデルの層 | |
print(model.layers) | |
# 切り出した重みの取得 | |
print(model.layers[0].get_weights()) | |
# Convolution 層の計算 | |
output = model.layers[0](x_sample) # convolution 層の計算 | |
output = output[0].numpy() # NumPy の ndarray オブジェクトに変換 | |
print(output.shape) | |
# 1 つ目の出力 | |
plt.imshow(output[:, :, 0], cmap='gray') | |
plt.show() | |
# 2 つ目の出力 | |
plt.imshow(output[:, :, 1], cmap='gray') | |
plt.show() | |
# 3 つ目の出力 | |
plt.imshow(output[:, :, 2], cmap='gray') | |
plt.show() | |
# Pooling 層の計算 | |
output = model.layers[0](x_sample) # convolution 層の計算 | |
output = model.layers[1](output) # pooling 層の計算(サイズを 1/2 に変換) | |
output = output[0].numpy() | |
print(output.shape) | |
# 1 つ目の出力 | |
plt.imshow(output[:, :, 0], cmap='gray') | |
plt.show() | |
# 2 つ目の出力 | |
plt.imshow(output[:, :, 1], cmap='gray') | |
plt.show() | |
# 3 つ目の出力 | |
plt.imshow(output[:, :, 2], cmap='gray') | |
plt.show() | |
# ベクトル化 | |
output = model.layers[0](x_sample) # convolution 層の計算 | |
output = model.layers[1](output) # pooling 層の計算(サイズを 1/2 に変換) | |
output = model.layers[2](output) # ベクトル化 | |
output = output[0].numpy() | |
print(output.shape) | |
出力結果
データセット読み込み後、1つ目の画像を抽出。
Convolution 層のフィルタを通して出力されるデータ毎に可視化。1つ目。
実行ログ
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
[name: "/device:CPU:0" | |
device_type: "CPU" | |
memory_limit: 268435456 | |
locality { | |
} | |
incarnation: 13236399410543303316 | |
] | |
2 | |
<class 'numpy.ndarray'> | |
[[[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0] | |
... | |
[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0]] | |
[[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0] | |
... | |
[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0]] | |
[[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0] | |
... | |
[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0]] | |
... | |
[[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0] | |
... | |
[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0]] | |
[[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0] | |
... | |
[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0]] | |
[[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0] | |
... | |
[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0] | |
[0 0 0 ... 0 0 0]]] | |
(60000, 28, 28) | |
<class 'numpy.ndarray'> | |
[5 0 4 ... 5 6 8] | |
(60000,) | |
(28, 28, 1) | |
0.0 1.0 | |
Model: "sequential" | |
_________________________________________________________________ | |
Layer (type) Output Shape Param # | |
================================================================= | |
conv2d (Conv2D) (None, 26, 26, 3) 30 | |
_________________________________________________________________ | |
max_pooling2d (MaxPooling2D) (None, 13, 13, 3) 0 | |
_________________________________________________________________ | |
flatten (Flatten) (None, 507) 0 | |
_________________________________________________________________ | |
dense (Dense) (None, 100) 50800 | |
_________________________________________________________________ | |
dense_1 (Dense) (None, 10) 1010 | |
================================================================= | |
Total params: 51,840 | |
Trainable params: 51,840 | |
Non-trainable params: 0 | |
_________________________________________________________________ | |
None | |
None | |
Train on 60000 samples, validate on 10000 samples | |
Epoch 1/30 | |
4096/60000 [=>............................] - ETA: 22s - loss: 2.4218 - accuracy: 0.0925 | |
8192/60000 [===>..........................] - ETA: 12s - loss: 2.1954 - accuracy: 0.2791 | |
12288/60000 [=====>........................] - ETA: 9s - loss: 1.9989 - accuracy: 0.3930 | |
16384/60000 [=======>......................] - ETA: 7s - loss: 1.8076 - accuracy: 0.4697 | |
20480/60000 [=========>....................] - ETA: 6s - loss: 1.6403 - accuracy: 0.5237 | |
24576/60000 [===========>..................] - ETA: 5s - loss: 1.4936 - accuracy: 0.5659 | |
28672/60000 [=============>................] - ETA: 4s - loss: 1.3750 - accuracy: 0.5969 | |
32768/60000 [===============>..............] - ETA: 3s - loss: 1.2725 - accuracy: 0.6250 | |
36864/60000 [=================>............] - ETA: 2s - loss: 1.1860 - accuracy: 0.6492 | |
40960/60000 [===================>..........] - ETA: 2s - loss: 1.1180 - accuracy: 0.6685 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 1.0581 - accuracy: 0.6862 | |
49152/60000 [=======================>......] - ETA: 1s - loss: 1.0071 - accuracy: 0.7018 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.9646 - accuracy: 0.7141 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.9236 - accuracy: 0.7260 | |
60000/60000 [==============================] - 7s 117us/sample - loss: 0.9005 - accuracy: 0.7333 - val_loss: 0.3815 - val_accuracy: 0.8948 | |
Epoch 2/30 | |
4096/60000 [=>............................] - ETA: 4s - loss: 0.3643 - accuracy: 0.8975 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.3985 - accuracy: 0.8896 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.3881 - accuracy: 0.8893 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.3851 - accuracy: 0.8896 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.3761 - accuracy: 0.8926 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.3705 - accuracy: 0.8948 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.3625 - accuracy: 0.8964 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.3587 - accuracy: 0.8974 | |
36864/60000 [=================>............] - ETA: 1s - loss: 0.3554 - accuracy: 0.8981 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.3493 - accuracy: 0.9003 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.3462 - accuracy: 0.9011 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.3416 - accuracy: 0.9021 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.3364 - accuracy: 0.9035 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.3316 - accuracy: 0.9046 | |
60000/60000 [==============================] - 5s 92us/sample - loss: 0.3285 - accuracy: 0.9055 - val_loss: 0.2628 - val_accuracy: 0.9209 | |
Epoch 3/30 | |
4096/60000 [=>............................] - ETA: 4s - loss: 0.2686 - accuracy: 0.9197 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.2810 - accuracy: 0.9185 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.2694 - accuracy: 0.9211 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.2659 - accuracy: 0.9231 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.2645 - accuracy: 0.9232 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.2602 - accuracy: 0.9246 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.2569 - accuracy: 0.9252 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.2546 - accuracy: 0.9265 | |
36864/60000 [=================>............] - ETA: 2s - loss: 0.2514 - accuracy: 0.9271 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.2491 - accuracy: 0.9274 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.2449 - accuracy: 0.9288 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.2420 - accuracy: 0.9296 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.2407 - accuracy: 0.9297 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.2383 - accuracy: 0.9304 | |
60000/60000 [==============================] - 6s 93us/sample - loss: 0.2376 - accuracy: 0.9307 - val_loss: 0.2018 - val_accuracy: 0.9366 | |
Epoch 4/30 | |
4096/60000 [=>............................] - ETA: 4s - loss: 0.2013 - accuracy: 0.9448 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.2076 - accuracy: 0.9415 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.2024 - accuracy: 0.9408 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.2013 - accuracy: 0.9413 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.2025 - accuracy: 0.9405 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.2023 - accuracy: 0.9406 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.1978 - accuracy: 0.9422 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.1951 - accuracy: 0.9426 | |
36864/60000 [=================>............] - ETA: 1s - loss: 0.1928 - accuracy: 0.9431 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.1892 - accuracy: 0.9441 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.1894 - accuracy: 0.9439 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.1878 - accuracy: 0.9442 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.1885 - accuracy: 0.9444 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.1891 - accuracy: 0.9442 | |
60000/60000 [==============================] - 5s 91us/sample - loss: 0.1883 - accuracy: 0.9445 - val_loss: 0.1668 - val_accuracy: 0.9465 | |
Epoch 5/30 | |
4096/60000 [=>............................] - ETA: 4s - loss: 0.1623 - accuracy: 0.9546 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.1689 - accuracy: 0.9509 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.1715 - accuracy: 0.9492 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.1663 - accuracy: 0.9503 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.1664 - accuracy: 0.9501 | |
24576/60000 [===========>..................] - ETA: 2s - loss: 0.1653 - accuracy: 0.9506 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.1648 - accuracy: 0.9506 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.1635 - accuracy: 0.9510 | |
36864/60000 [=================>............] - ETA: 1s - loss: 0.1614 - accuracy: 0.9516 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.1611 - accuracy: 0.9514 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.1603 - accuracy: 0.9517 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.1594 - accuracy: 0.9522 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.1590 - accuracy: 0.9520 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.1567 - accuracy: 0.9529 | |
60000/60000 [==============================] - 5s 91us/sample - loss: 0.1562 - accuracy: 0.9531 - val_loss: 0.1433 - val_accuracy: 0.9547 | |
Epoch 6/30 | |
4096/60000 [=>............................] - ETA: 4s - loss: 0.1276 - accuracy: 0.9639 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.1416 - accuracy: 0.9597 | |
12288/60000 [=====>........................] - ETA: 3s - loss: 0.1406 - accuracy: 0.9598 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.1412 - accuracy: 0.9595 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.1405 - accuracy: 0.9591 | |
24576/60000 [===========>..................] - ETA: 2s - loss: 0.1395 - accuracy: 0.9599 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.1382 - accuracy: 0.9600 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.1365 - accuracy: 0.9599 | |
36864/60000 [=================>............] - ETA: 1s - loss: 0.1370 - accuracy: 0.9595 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.1366 - accuracy: 0.9599 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.1353 - accuracy: 0.9601 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.1338 - accuracy: 0.9605 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.1340 - accuracy: 0.9604 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.1333 - accuracy: 0.9607 | |
60000/60000 [==============================] - 5s 92us/sample - loss: 0.1334 - accuracy: 0.9605 - val_loss: 0.1293 - val_accuracy: 0.9592 | |
Epoch 7/30 | |
4096/60000 [=>............................] - ETA: 4s - loss: 0.1419 - accuracy: 0.9602 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.1305 - accuracy: 0.9618 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.1245 - accuracy: 0.9644 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.1216 - accuracy: 0.9650 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.1172 - accuracy: 0.9663 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.1161 - accuracy: 0.9661 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.1164 - accuracy: 0.9655 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.1170 - accuracy: 0.9654 | |
36864/60000 [=================>............] - ETA: 1s - loss: 0.1168 - accuracy: 0.9654 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.1173 - accuracy: 0.9654 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.1169 - accuracy: 0.9653 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.1164 - accuracy: 0.9653 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.1165 - accuracy: 0.9650 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.1157 - accuracy: 0.9654 | |
60000/60000 [==============================] - 6s 93us/sample - loss: 0.1155 - accuracy: 0.9654 - val_loss: 0.1108 - val_accuracy: 0.9654 | |
Epoch 8/30 | |
4096/60000 [=>............................] - ETA: 4s - loss: 0.1004 - accuracy: 0.9678 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0994 - accuracy: 0.9688 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0976 - accuracy: 0.9700 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0981 - accuracy: 0.9702 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0970 - accuracy: 0.9703 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0971 - accuracy: 0.9698 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.0985 - accuracy: 0.9700 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0967 - accuracy: 0.9704 | |
36864/60000 [=================>............] - ETA: 2s - loss: 0.0962 - accuracy: 0.9706 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0967 - accuracy: 0.9707 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0958 - accuracy: 0.9709 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0968 - accuracy: 0.9706 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0971 - accuracy: 0.9707 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0985 - accuracy: 0.9705 | |
60000/60000 [==============================] - 6s 95us/sample - loss: 0.0985 - accuracy: 0.9706 - val_loss: 0.0990 - val_accuracy: 0.9686 | |
Epoch 9/30 | |
4096/60000 [=>............................] - ETA: 4s - loss: 0.0931 - accuracy: 0.9734 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0986 - accuracy: 0.9707 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0982 - accuracy: 0.9713 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0943 - accuracy: 0.9720 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0926 - accuracy: 0.9723 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0915 - accuracy: 0.9727 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.0936 - accuracy: 0.9719 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0935 - accuracy: 0.9716 | |
36864/60000 [=================>............] - ETA: 2s - loss: 0.0921 - accuracy: 0.9723 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0909 - accuracy: 0.9726 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0909 - accuracy: 0.9726 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0905 - accuracy: 0.9725 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0912 - accuracy: 0.9723 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0906 - accuracy: 0.9724 | |
60000/60000 [==============================] - 6s 95us/sample - loss: 0.0900 - accuracy: 0.9727 - val_loss: 0.1048 - val_accuracy: 0.9661 | |
Epoch 10/30 | |
4096/60000 [=>............................] - ETA: 5s - loss: 0.0806 - accuracy: 0.9744 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0882 - accuracy: 0.9730 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0862 - accuracy: 0.9733 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0855 - accuracy: 0.9738 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0842 - accuracy: 0.9746 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0828 - accuracy: 0.9749 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.0813 - accuracy: 0.9754 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0817 - accuracy: 0.9753 | |
36864/60000 [=================>............] - ETA: 2s - loss: 0.0818 - accuracy: 0.9752 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0819 - accuracy: 0.9753 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0814 - accuracy: 0.9751 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0811 - accuracy: 0.9752 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0812 - accuracy: 0.9751 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0820 - accuracy: 0.9748 | |
60000/60000 [==============================] - 6s 96us/sample - loss: 0.0817 - accuracy: 0.9748 - val_loss: 0.0892 - val_accuracy: 0.9714 | |
Epoch 11/30 | |
4096/60000 [=>............................] - ETA: 5s - loss: 0.0764 - accuracy: 0.9749 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0846 - accuracy: 0.9722 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0788 - accuracy: 0.9757 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0775 - accuracy: 0.9761 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0791 - accuracy: 0.9756 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0776 - accuracy: 0.9759 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.0786 - accuracy: 0.9755 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0782 - accuracy: 0.9760 | |
36864/60000 [=================>............] - ETA: 2s - loss: 0.0777 - accuracy: 0.9762 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0768 - accuracy: 0.9764 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0770 - accuracy: 0.9762 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0775 - accuracy: 0.9761 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0774 - accuracy: 0.9761 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0767 - accuracy: 0.9763 | |
60000/60000 [==============================] - 6s 97us/sample - loss: 0.0769 - accuracy: 0.9761 - val_loss: 0.0852 - val_accuracy: 0.9745 | |
Epoch 12/30 | |
4096/60000 [=>............................] - ETA: 5s - loss: 0.0669 - accuracy: 0.9785 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0698 - accuracy: 0.9780 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0695 - accuracy: 0.9787 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0687 - accuracy: 0.9783 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0696 - accuracy: 0.9781 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0691 - accuracy: 0.9781 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.0684 - accuracy: 0.9783 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0668 - accuracy: 0.9788 | |
36864/60000 [=================>............] - ETA: 2s - loss: 0.0684 - accuracy: 0.9785 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0685 - accuracy: 0.9787 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0687 - accuracy: 0.9785 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0690 - accuracy: 0.9784 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0687 - accuracy: 0.9785 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0689 - accuracy: 0.9786 | |
60000/60000 [==============================] - 6s 96us/sample - loss: 0.0690 - accuracy: 0.9786 - val_loss: 0.0824 - val_accuracy: 0.9749 | |
Epoch 13/30 | |
4096/60000 [=>............................] - ETA: 4s - loss: 0.0714 - accuracy: 0.9768 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0639 - accuracy: 0.9806 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0648 - accuracy: 0.9798 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0639 - accuracy: 0.9806 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0629 - accuracy: 0.9813 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0629 - accuracy: 0.9815 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.0633 - accuracy: 0.9810 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0637 - accuracy: 0.9809 | |
36864/60000 [=================>............] - ETA: 1s - loss: 0.0636 - accuracy: 0.9809 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0635 - accuracy: 0.9809 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0628 - accuracy: 0.9810 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0621 - accuracy: 0.9814 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0621 - accuracy: 0.9813 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0629 - accuracy: 0.9810 | |
60000/60000 [==============================] - 6s 92us/sample - loss: 0.0629 - accuracy: 0.9810 - val_loss: 0.0771 - val_accuracy: 0.9760 | |
Epoch 14/30 | |
4096/60000 [=>............................] - ETA: 4s - loss: 0.0471 - accuracy: 0.9851 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0542 - accuracy: 0.9838 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0528 - accuracy: 0.9832 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0568 - accuracy: 0.9826 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0556 - accuracy: 0.9832 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0553 - accuracy: 0.9832 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.0539 - accuracy: 0.9838 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0537 - accuracy: 0.9837 | |
36864/60000 [=================>............] - ETA: 1s - loss: 0.0531 - accuracy: 0.9842 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0529 - accuracy: 0.9842 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0533 - accuracy: 0.9840 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0538 - accuracy: 0.9837 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0536 - accuracy: 0.9837 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0541 - accuracy: 0.9836 | |
60000/60000 [==============================] - 6s 92us/sample - loss: 0.0549 - accuracy: 0.9834 - val_loss: 0.0779 - val_accuracy: 0.9756 | |
Epoch 15/30 | |
4096/60000 [=>............................] - ETA: 5s - loss: 0.0568 - accuracy: 0.9829 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0537 - accuracy: 0.9844 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0530 - accuracy: 0.9848 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0539 - accuracy: 0.9843 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0522 - accuracy: 0.9849 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0521 - accuracy: 0.9848 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.0517 - accuracy: 0.9851 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0516 - accuracy: 0.9848 | |
36864/60000 [=================>............] - ETA: 2s - loss: 0.0511 - accuracy: 0.9848 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0509 - accuracy: 0.9847 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0515 - accuracy: 0.9847 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0510 - accuracy: 0.9848 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0508 - accuracy: 0.9849 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0511 - accuracy: 0.9845 | |
60000/60000 [==============================] - 6s 96us/sample - loss: 0.0511 - accuracy: 0.9844 - val_loss: 0.0777 - val_accuracy: 0.9773 | |
Epoch 16/30 | |
4096/60000 [=>............................] - ETA: 5s - loss: 0.0478 - accuracy: 0.9844 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0466 - accuracy: 0.9845 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0430 - accuracy: 0.9865 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0438 - accuracy: 0.9863 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0454 - accuracy: 0.9854 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0447 - accuracy: 0.9857 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.0459 - accuracy: 0.9857 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0460 - accuracy: 0.9854 | |
36864/60000 [=================>............] - ETA: 2s - loss: 0.0463 - accuracy: 0.9857 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0463 - accuracy: 0.9857 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0468 - accuracy: 0.9855 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0477 - accuracy: 0.9852 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0480 - accuracy: 0.9851 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0478 - accuracy: 0.9852 | |
60000/60000 [==============================] - 6s 96us/sample - loss: 0.0476 - accuracy: 0.9853 - val_loss: 0.0734 - val_accuracy: 0.9774 | |
Epoch 17/30 | |
4096/60000 [=>............................] - ETA: 4s - loss: 0.0489 - accuracy: 0.9893 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0461 - accuracy: 0.9884 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0457 - accuracy: 0.9874 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0439 - accuracy: 0.9877 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0451 - accuracy: 0.9866 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0450 - accuracy: 0.9864 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.0442 - accuracy: 0.9865 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0442 - accuracy: 0.9864 | |
36864/60000 [=================>............] - ETA: 2s - loss: 0.0439 - accuracy: 0.9862 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0437 - accuracy: 0.9862 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0438 - accuracy: 0.9861 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0444 - accuracy: 0.9860 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0449 - accuracy: 0.9858 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0455 - accuracy: 0.9855 | |
60000/60000 [==============================] - 6s 96us/sample - loss: 0.0460 - accuracy: 0.9854 - val_loss: 0.0745 - val_accuracy: 0.9779 | |
Epoch 18/30 | |
4096/60000 [=>............................] - ETA: 4s - loss: 0.0341 - accuracy: 0.9883 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0436 - accuracy: 0.9845 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0420 - accuracy: 0.9857 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0445 - accuracy: 0.9854 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0454 - accuracy: 0.9853 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0457 - accuracy: 0.9851 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.0450 - accuracy: 0.9855 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0452 - accuracy: 0.9854 | |
36864/60000 [=================>............] - ETA: 2s - loss: 0.0447 - accuracy: 0.9856 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0445 - accuracy: 0.9856 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0441 - accuracy: 0.9857 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0439 - accuracy: 0.9857 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0440 - accuracy: 0.9858 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0437 - accuracy: 0.9860 | |
60000/60000 [==============================] - 6s 94us/sample - loss: 0.0436 - accuracy: 0.9862 - val_loss: 0.0712 - val_accuracy: 0.9779 | |
Epoch 19/30 | |
4096/60000 [=>............................] - ETA: 5s - loss: 0.0329 - accuracy: 0.9895 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0314 - accuracy: 0.9901 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0327 - accuracy: 0.9889 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0345 - accuracy: 0.9885 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0355 - accuracy: 0.9883 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0360 - accuracy: 0.9883 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.0366 - accuracy: 0.9883 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0374 - accuracy: 0.9882 | |
36864/60000 [=================>............] - ETA: 2s - loss: 0.0375 - accuracy: 0.9883 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0380 - accuracy: 0.9880 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0382 - accuracy: 0.9880 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0387 - accuracy: 0.9879 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0390 - accuracy: 0.9875 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0384 - accuracy: 0.9878 | |
60000/60000 [==============================] - 6s 97us/sample - loss: 0.0384 - accuracy: 0.9877 - val_loss: 0.0830 - val_accuracy: 0.9753 | |
Epoch 20/30 | |
4096/60000 [=>............................] - ETA: 4s - loss: 0.0465 - accuracy: 0.9829 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0405 - accuracy: 0.9855 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0374 - accuracy: 0.9870 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0385 - accuracy: 0.9870 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0374 - accuracy: 0.9875 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0377 - accuracy: 0.9876 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.0380 - accuracy: 0.9875 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0385 - accuracy: 0.9874 | |
36864/60000 [=================>............] - ETA: 2s - loss: 0.0384 - accuracy: 0.9875 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0377 - accuracy: 0.9877 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0371 - accuracy: 0.9879 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0371 - accuracy: 0.9880 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0368 - accuracy: 0.9882 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0372 - accuracy: 0.9881 | |
60000/60000 [==============================] - 6s 96us/sample - loss: 0.0376 - accuracy: 0.9879 - val_loss: 0.0730 - val_accuracy: 0.9798 | |
Epoch 21/30 | |
4096/60000 [=>............................] - ETA: 4s - loss: 0.0259 - accuracy: 0.9934 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0305 - accuracy: 0.9911 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0302 - accuracy: 0.9915 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0293 - accuracy: 0.9914 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0318 - accuracy: 0.9902 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0335 - accuracy: 0.9896 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.0340 - accuracy: 0.9893 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0344 - accuracy: 0.9890 | |
36864/60000 [=================>............] - ETA: 2s - loss: 0.0346 - accuracy: 0.9889 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0343 - accuracy: 0.9890 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0345 - accuracy: 0.9890 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0350 - accuracy: 0.9889 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0343 - accuracy: 0.9891 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0347 - accuracy: 0.9890 | |
60000/60000 [==============================] - 6s 95us/sample - loss: 0.0353 - accuracy: 0.9889 - val_loss: 0.0710 - val_accuracy: 0.9784 | |
Epoch 22/30 | |
4096/60000 [=>............................] - ETA: 4s - loss: 0.0273 - accuracy: 0.9922 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0301 - accuracy: 0.9911 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0306 - accuracy: 0.9904 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0294 - accuracy: 0.9907 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0305 - accuracy: 0.9902 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0308 - accuracy: 0.9903 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.0305 - accuracy: 0.9902 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0305 - accuracy: 0.9901 | |
36864/60000 [=================>............] - ETA: 2s - loss: 0.0307 - accuracy: 0.9901 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0310 - accuracy: 0.9900 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0309 - accuracy: 0.9901 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0307 - accuracy: 0.9901 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0307 - accuracy: 0.9903 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0311 - accuracy: 0.9901 | |
60000/60000 [==============================] - 6s 94us/sample - loss: 0.0309 - accuracy: 0.9902 - val_loss: 0.0695 - val_accuracy: 0.9799 | |
Epoch 23/30 | |
4096/60000 [=>............................] - ETA: 4s - loss: 0.0247 - accuracy: 0.9927 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0268 - accuracy: 0.9918 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0276 - accuracy: 0.9912 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0258 - accuracy: 0.9920 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0269 - accuracy: 0.9919 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0264 - accuracy: 0.9920 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.0266 - accuracy: 0.9921 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0269 - accuracy: 0.9920 | |
36864/60000 [=================>............] - ETA: 1s - loss: 0.0270 - accuracy: 0.9920 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0278 - accuracy: 0.9916 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0276 - accuracy: 0.9917 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0275 - accuracy: 0.9917 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0274 - accuracy: 0.9918 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0274 - accuracy: 0.9918 | |
60000/60000 [==============================] - 6s 92us/sample - loss: 0.0274 - accuracy: 0.9918 - val_loss: 0.0684 - val_accuracy: 0.9798 | |
Epoch 24/30 | |
4096/60000 [=>............................] - ETA: 4s - loss: 0.0309 - accuracy: 0.9917 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0273 - accuracy: 0.9923 | |
12288/60000 [=====>........................] - ETA: 3s - loss: 0.0279 - accuracy: 0.9923 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0280 - accuracy: 0.9924 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0277 - accuracy: 0.9921 | |
24576/60000 [===========>..................] - ETA: 2s - loss: 0.0266 - accuracy: 0.9925 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.0261 - accuracy: 0.9926 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0258 - accuracy: 0.9925 | |
36864/60000 [=================>............] - ETA: 1s - loss: 0.0252 - accuracy: 0.9928 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0254 - accuracy: 0.9929 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0250 - accuracy: 0.9930 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0251 - accuracy: 0.9928 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0250 - accuracy: 0.9927 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0250 - accuracy: 0.9926 | |
60000/60000 [==============================] - 5s 92us/sample - loss: 0.0251 - accuracy: 0.9926 - val_loss: 0.0810 - val_accuracy: 0.9771 | |
Epoch 25/30 | |
4096/60000 [=>............................] - ETA: 4s - loss: 0.0230 - accuracy: 0.9927 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0233 - accuracy: 0.9924 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0217 - accuracy: 0.9932 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0242 - accuracy: 0.9921 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0247 - accuracy: 0.9921 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0248 - accuracy: 0.9923 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.0243 - accuracy: 0.9925 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0239 - accuracy: 0.9927 | |
36864/60000 [=================>............] - ETA: 2s - loss: 0.0242 - accuracy: 0.9926 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0247 - accuracy: 0.9925 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0248 - accuracy: 0.9924 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0247 - accuracy: 0.9924 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0247 - accuracy: 0.9924 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0248 - accuracy: 0.9924 | |
60000/60000 [==============================] - 6s 93us/sample - loss: 0.0251 - accuracy: 0.9923 - val_loss: 0.0722 - val_accuracy: 0.9796 | |
Epoch 26/30 | |
4096/60000 [=>............................] - ETA: 4s - loss: 0.0267 - accuracy: 0.9905 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0230 - accuracy: 0.9928 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0225 - accuracy: 0.9932 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0218 - accuracy: 0.9937 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0227 - accuracy: 0.9931 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0221 - accuracy: 0.9932 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.0222 - accuracy: 0.9932 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0224 - accuracy: 0.9932 | |
36864/60000 [=================>............] - ETA: 2s - loss: 0.0221 - accuracy: 0.9934 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0219 - accuracy: 0.9934 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0215 - accuracy: 0.9936 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0215 - accuracy: 0.9936 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0218 - accuracy: 0.9935 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0216 - accuracy: 0.9935 | |
60000/60000 [==============================] - 6s 94us/sample - loss: 0.0216 - accuracy: 0.9935 - val_loss: 0.0702 - val_accuracy: 0.9805 | |
Epoch 27/30 | |
4096/60000 [=>............................] - ETA: 4s - loss: 0.0156 - accuracy: 0.9963 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0158 - accuracy: 0.9957 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0181 - accuracy: 0.9950 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0189 - accuracy: 0.9948 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0191 - accuracy: 0.9952 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0198 - accuracy: 0.9946 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.0194 - accuracy: 0.9947 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0190 - accuracy: 0.9948 | |
36864/60000 [=================>............] - ETA: 1s - loss: 0.0192 - accuracy: 0.9946 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0189 - accuracy: 0.9946 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0194 - accuracy: 0.9945 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0193 - accuracy: 0.9946 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0195 - accuracy: 0.9945 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0192 - accuracy: 0.9947 | |
60000/60000 [==============================] - 5s 91us/sample - loss: 0.0194 - accuracy: 0.9946 - val_loss: 0.0734 - val_accuracy: 0.9796 | |
Epoch 28/30 | |
4096/60000 [=>............................] - ETA: 4s - loss: 0.0164 - accuracy: 0.9963 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0172 - accuracy: 0.9956 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0170 - accuracy: 0.9960 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0183 - accuracy: 0.9957 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0182 - accuracy: 0.9957 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0179 - accuracy: 0.9956 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.0184 - accuracy: 0.9952 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0181 - accuracy: 0.9953 | |
36864/60000 [=================>............] - ETA: 1s - loss: 0.0183 - accuracy: 0.9953 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0185 - accuracy: 0.9951 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0187 - accuracy: 0.9949 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0188 - accuracy: 0.9948 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0188 - accuracy: 0.9947 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0189 - accuracy: 0.9946 | |
60000/60000 [==============================] - 6s 93us/sample - loss: 0.0187 - accuracy: 0.9947 - val_loss: 0.0779 - val_accuracy: 0.9781 | |
Epoch 29/30 | |
4096/60000 [=>............................] - ETA: 5s - loss: 0.0223 - accuracy: 0.9939 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0199 - accuracy: 0.9948 | |
12288/60000 [=====>........................] - ETA: 4s - loss: 0.0203 - accuracy: 0.9944 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0192 - accuracy: 0.9944 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0178 - accuracy: 0.9950 | |
24576/60000 [===========>..................] - ETA: 3s - loss: 0.0178 - accuracy: 0.9948 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.0180 - accuracy: 0.9948 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0175 - accuracy: 0.9949 | |
36864/60000 [=================>............] - ETA: 2s - loss: 0.0174 - accuracy: 0.9950 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0169 - accuracy: 0.9952 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0173 - accuracy: 0.9949 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0172 - accuracy: 0.9949 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0170 - accuracy: 0.9950 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0176 - accuracy: 0.9948 | |
60000/60000 [==============================] - 6s 92us/sample - loss: 0.0178 - accuracy: 0.9948 - val_loss: 0.0757 - val_accuracy: 0.9790 | |
Epoch 30/30 | |
4096/60000 [=>............................] - ETA: 4s - loss: 0.0154 - accuracy: 0.9949 | |
8192/60000 [===>..........................] - ETA: 4s - loss: 0.0166 - accuracy: 0.9944 | |
12288/60000 [=====>........................] - ETA: 3s - loss: 0.0163 - accuracy: 0.9948 | |
16384/60000 [=======>......................] - ETA: 3s - loss: 0.0162 - accuracy: 0.9951 | |
20480/60000 [=========>....................] - ETA: 3s - loss: 0.0166 - accuracy: 0.9948 | |
24576/60000 [===========>..................] - ETA: 2s - loss: 0.0165 - accuracy: 0.9948 | |
28672/60000 [=============>................] - ETA: 2s - loss: 0.0161 - accuracy: 0.9950 | |
32768/60000 [===============>..............] - ETA: 2s - loss: 0.0159 - accuracy: 0.9952 | |
36864/60000 [=================>............] - ETA: 1s - loss: 0.0166 - accuracy: 0.9950 | |
40960/60000 [===================>..........] - ETA: 1s - loss: 0.0170 - accuracy: 0.9949 | |
45056/60000 [=====================>........] - ETA: 1s - loss: 0.0170 - accuracy: 0.9949 | |
49152/60000 [=======================>......] - ETA: 0s - loss: 0.0171 - accuracy: 0.9949 | |
53248/60000 [=========================>....] - ETA: 0s - loss: 0.0169 - accuracy: 0.9949 | |
57344/60000 [===========================>..] - ETA: 0s - loss: 0.0175 - accuracy: 0.9948 | |
60000/60000 [==============================] - 5s 92us/sample - loss: 0.0177 - accuracy: 0.9948 - val_loss: 0.0777 - val_accuracy: 0.9792 | |
loss accuracy val_loss val_accuracy | |
27 0.018740 0.994683 0.077904 0.9781 | |
28 0.017760 0.994750 0.075688 0.9790 | |
29 0.017704 0.994767 0.077669 0.9792 | |
(1, 28, 28, 1) | |
[<tensorflow.python.keras.layers.convolutional.Conv2D object at 0x000002A710972C08>, <tensorflow.python.keras.layers.pooling.MaxPooling2D object at 0x000002A719A337C8>, <tensorflow.python.keras.layers.core.Flatten object at 0x000002A719A32AC8>, <tensorflow.python.keras.layers.core.Dense object at 0x000002A719A49688>, <tensorflow.python.keras.layers.core.Dense object at 0x000002A719A2F248>] | |
[array([[[[-0.82907677, -0.7962916 , 0.38359177]], | |
[[ 0.3429307 , -0.27833146, 0.59408164]], | |
[[ 0.5247829 , 0.5927083 , 0.2917029 ]]], | |
[[[-0.8684553 , -0.32124314, 0.37797683]], | |
[[-0.1796955 , 0.10554386, 0.27022994]], | |
[[ 0.6602316 , 0.61931485, 0.3056805 ]]], | |
[[[-0.12969881, -0.27535865, -0.30478483]], | |
[[-0.8268494 , 0.5394653 , 0.34637433]], | |
[[ 0.40404692, 0.09111527, 0.43088043]]]], dtype=float32), array([ 0.07662638, 0.02554144, -0.0072965 ], dtype=float32)] | |
(26, 26, 3) | |
(13, 13, 3) | |
(507,) |